Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Malcolm J. Todd and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.022$
$w R$ factor $=0.055$
Data-to-parameter ratio $=19.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Propane-1,3-diaminium hydrogenarsenate monohydrate

The title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{HAsO}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, contains a network of propane-1,3-diaminium cations, hydrogenarsenate anions [mean As $-\mathrm{O}=1.687$ (2) \AA] and water molecules. The crystal packing involves anion-to-anion and water-to-anion $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, resulting in infinite chains containing the unusual $R_{3}^{3}(10)$ graph-set motif. Cation-toanion and cation-to-water $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate a three-dimensional overall structure.

Comment

The title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$ [$\left.\mathrm{HAsO}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, (I) (Fig. 1), was prepared as part of our ongoing structural studies of hydrogen-bonding interactions in protonated-amine (di)hydrogen arsenates (Lee \& Harrison, 2003a; Wilkinson \& Harrison, 2004; Todd \& Harrison, 2005). In particular, (I) complements propane-1,3-diaminium bis(dihydrogenarsenate), $\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]_{2}$ (Wilkinson \& Harrison, 2005), prepared under different pH conditions.

(I)

The $\left[\mathrm{HAsO}_{4}\right]^{2-}$ hydrogenarsenate group in (I) has normal tetrahedral geometry [mean $\mathrm{As}-\mathrm{O}=1.687$ (2) \AA], with the protonated As1-O4 vertex showing its usual lengthening relative to the unprotonated $\mathrm{As}-\mathrm{O}$ bonds (Table 1). The propane-1,3-diaminium cation shows no unusual geometrical features.

As well as electrostatic attractions, the component species in (I) interact by means of a network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The $\left[\mathrm{HAsO}_{4}\right]^{2-}$ units and water molecules are linked into polymeric chains (Fig. 2) propagating along [010] by way of anion-to-anion O4$\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$ and water-to-anion $\mathrm{O} 5-\mathrm{H} 14 \cdots \mathrm{O} 1$ and $\mathrm{O} 5-$

Figure 1

A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines.

Received 6 June 2005 Accepted 29 June 2005 Online 6 July 2005
$\mathrm{H} 15 \cdots \mathrm{O} 2^{\mathrm{ii}}$ bonds (Table 2). This arrangement results in an unusual $R_{3}^{3}(10)$ graph-set (Bernstein et al., 1995) motif. The As $1 \cdots$ As 1^{i} separation is 4.7991 (3) \AA.

The organic species interacts with the hydrogenarsenate/ water chains by way of six $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [mean $\mathrm{H} \cdots \mathrm{O}=1.89 \mathrm{~A}$, mean $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=171^{\circ}$ and mean $\mathrm{N} \cdots \mathrm{O}=$ 2.793 (2) \AA]. One of the acceptor O atoms is part of a water molecule, and the other five are parts of hydrogenarsenate groups. This hydrogen-bonding scheme results in a threedimensional network (Fig. 3).

The hydrogen-bonded hydrogenarsenate/water chains in (I) are different from the motifs seen in related structures. In bis(cycloheptylaminium) hydrogenarsenate monohydrate (Todd \& Harrison, 2005) and bis(benzylammonium) hydrogenarsenate monohydrate (Lee \& Harrison, 2003c), hydrogen-bonded dimers of $\left[\mathrm{HAsO}_{4}\right]^{2-}$ units occur, with the dimers bridged into double chains by intervening water molecules. In the unhydrated piperidinium dihydrogenarsenate (Lee \& Harrison, 2003b) and t-butylammonium dihydrogenarsenate (Wilkinson \& Harrison, 2004), single chains of $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$anions occur with each adjacent dihydrogenarsenate pair linked by a pair of hydrogen bonds. In propane-1,3-diaminium bis(dihydrogenarsenate) (Wilkinson \& Harrison, 2005), the same organic cation as found in (I) is combined with dihydrogenarsenate $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$groups, with the latter forming double chains.

Experimental

0.5 M aqueous propane-1,3-diamine solution (10 ml) was added to 0.5 M aqueous $\mathrm{H}_{3} \mathrm{AsO}_{4}$ solution (10 ml) to result in a clear solution. Aqueous ammonia was added to this solution to raise the pH to about 12 , which is beyond the second end-point for $\mathrm{H}_{3} \mathrm{AsO}_{4}$ (i.e. the predominant species is $\left[\mathrm{HAsO}_{4}\right]^{2-}$). Platy crystals of (I) grew as the water evaporated over the course of a few days.

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{HAsO}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=234.09 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=7.1327(2) \AA \\
& b=16.8046(6) \AA \\
& c=7.9402(2) \AA \\
& \beta=113.253(2)^{\circ} \\
& V=874.42(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.778 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 2043 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=3.87 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Plate, colourless
$0.32 \times 0.24 \times 0.03 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.370, T_{\text {max }}=0.892$
11562 measured reflections
2002 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.055$
$S=1.05$
2002 reflections
103 parameters
H -atom parameters constrained

Figure 2
Detail of a hydrogen-bonded (dashed lines) hydrogenarsenate/water chain in (I).

Figure 3
The crystal packing of (I). Dashed lines indicate hydrogen bonds.

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

As1-O1	$1.6612(14)$	As1-O3	$1.6814(14)$
As1-O2	$1.6746(13)$	As1-O4	$1.7302(13)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$175.33(16)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$175.49(16)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	1.71	2.6207 (19)	166
O5-H14 . ${ }^{\text {O }} 1$	0.92	1.79	2.709 (2)	177
$\mathrm{O} 5-\mathrm{H} 15 \cdots \mathrm{O} 2^{\text {ii }}$	0.89	1.98	2.858 (2)	169
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {iii }}$	0.91	1.81	2.711 (2)	173
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{O} 3^{\text {i }}$	0.91	1.96	2.855 (2)	166
$\mathrm{N} 1-\mathrm{H} 4 \cdots 5^{\text {iv }}$	0.91	1.90	2.798 (2)	168
$\mathrm{N} 2-\mathrm{H} 11 \cdots \mathrm{O} 3^{\text {ii }}$	0.91	1.90	2.802 (2)	170
$\mathrm{N} 2-\mathrm{H} 12 \cdots \mathrm{O} 2^{\text {v }}$	0.91	1.95	2.851 (2)	172
$\mathrm{N} 2-\mathrm{H} 13 \cdots \mathrm{O} 3$	0.91	1.84	2.743 (2)	175

[^0]
metal-organic papers

The O -bound H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. H atoms bonded to C and N atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.99 \AA$ and $\mathrm{N}-\mathrm{H}=0.91 \AA)$ and refined as riding, allowing for free rotation of the $-\mathrm{NH}_{3}$ groups. The constraint $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier) was applied in all cases.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski \& Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC National Crystallography Service (University of Southampton, England) for the data collection.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-37
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lee, C. \& Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.
Lee, C. \& Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960
Lee, C. \& Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Todd, M. J. \& Harrison, W. T. A. (2005). Acta Cryst. E61, m1024-m1026.
Wilkinson, H. S. \& Harrison, W. T. A. (2004). Acta Cryst. E60, m1359m1361.
Wilkinson, H. S. \& Harrison, W. T. A. (2005). Acta Cryst. E61, m1289-m1291.

[^0]: Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $x+1,-y+\frac{1}{2}, z-\frac{1}{2} ;(\mathrm{v}) x+1,-y+\frac{1}{2}, z+\frac{1}{2}$.

