Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Malcolm J. Todd and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

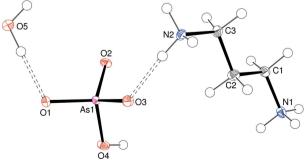
Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.022 wR factor = 0.055 Data-to-parameter ratio = 19.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Propane-1,3-diaminium hydrogenarsenate monohydrate

The title compound, $(C_3H_{12}N_2)[HAsO_4]\cdot H_2O$, contains a network of propane-1,3-diaminium cations, hydrogenarsenate anions [mean As-O = 1.687 (2) Å] and water molecules. The crystal packing involves anion-to-anion and water-to-anion $O-H\cdots O$ hydrogen bonds, resulting in infinite chains containing the unusual $R_3^3(10)$ graph-set motif. Cation-to-anion and cation-to-water $N-H\cdots O$ hydrogen bonds generate a three-dimensional overall structure.


Comment

The title compound, $(C_3H_{12}N_2)[HAsO_4]\cdot H_2O$, (I) (Fig. 1), was prepared as part of our ongoing structural studies of hydrogen-bonding interactions in protonated-amine (di)hydrogen arsenates (Lee & Harrison, 2003*a*; Wilkinson & Harrison, 2004; Todd & Harrison, 2005). In particular, (I) complements propane-1,3-diaminium bis(dihydrogenarsenate), $(C_3H_{12}N_2)[H_2AsO_4]_2$ (Wilkinson & Harrison, 2005), prepared under different pH conditions.

$$H_3N^+ \sim NH_3^+ \cdot [HAsO_4]^{2-} \cdot H_2O$$
(I)

The $[HAsO_4]^{2-}$ hydrogenarsenate group in (I) has normal tetrahedral geometry [mean As-O = 1.687 (2) Å], with the protonated As1-O4 vertex showing its usual lengthening relative to the unprotonated As-O bonds (Table 1). The propane-1,3-diaminium cation shows no unusual geometrical features.

As well as electrostatic attractions, the component species in (I) interact by means of a network of $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (Table 2). The $[HAsO_4]^{2-}$ units and water molecules are linked into polymeric chains (Fig. 2) propagating along [010] by way of anion-to-anion O4- $H1\cdots O2^i$ and water-to-anion O5- $H14\cdots O1$ and O5-

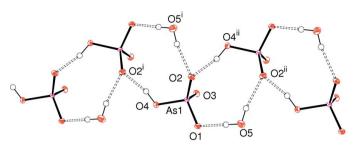
Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 6 June 2005 Accepted 29 June 2005 Online 6 July 2005 H15...O2ⁱⁱ bonds (Table 2). This arrangement results in an unusual $R_3^3(10)$ graph-set (Bernstein *et al.*, 1995) motif. The As1...As1ⁱ separation is 4.7991 (3) Å.

The organic species interacts with the hydrogenarsenate/ water chains by way of six $N-H\cdots O$ hydrogen bonds [mean $H\cdots O = 1.89$ Å, mean $N-H\cdots O = 171^{\circ}$ and mean $N\cdots O = 2.793$ (2) Å]. One of the acceptor O atoms is part of a water molecule, and the other five are parts of hydrogenarsenate groups. This hydrogen-bonding scheme results in a threedimensional network (Fig. 3).

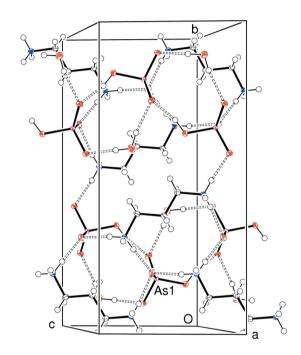
The hydrogen-bonded hydrogenarsenate/water chains in (I) are different from the motifs seen in related structures. In bis(cycloheptylaminium) hydrogenarsenate monohydrate (Todd & Harrison, 2005) and bis(benzylammonium) hydrogenarsenate monohydrate (Lee & Harrison, 2003c), hydrogen-bonded dimers of $[HAsO_4]^{2-}$ units occur, with the dimers bridged into double chains by intervening water molecules. In the unhydrated piperidinium dihydrogenarsenate (Lee & Harrison, 2003b) and t-butylammonium dihydrogenarsenate (Wilkinson & Harrison, 2004), single chains of $[H_2AsO_4]^$ anions occur with each adjacent dihydrogenarsenate pair linked by a pair of hydrogen bonds. In propane-1,3-diaminium bis(dihydrogenarsenate) (Wilkinson & Harrison, 2005), the same organic cation as found in (I) is combined with dihydrogenarsenate $[H_2AsO_4]^-$ groups, with the latter forming double chains.

Experimental


0.5 *M* aqueous propane-1,3-diamine solution (10 ml) was added to 0.5 *M* aqueous H_3AsO_4 solution (10 ml) to result in a clear solution. Aqueous ammonia was added to this solution to raise the pH to about 12, which is beyond the second end-point for H_3AsO_4 (*i.e.* the predominant species is $[HAsO_4]^{2-}$). Platy crystals of (I) grew as the water evaporated over the course of a few days.

Crystal data

$(C_3H_{12}N_2)[HAsO_4]\cdot H_2O$	$D_x = 1.778 \text{ Mg m}^{-3}$
(<i>)</i>	
$M_r = 234.09$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2043
$a = 7.1327 (2) \text{ Å}_{a}$	reflections
b = 16.8046 (6) Å	$\theta = 2.9-27.5^{\circ}$
c = 7.9402 (2) Å	$\mu = 3.87 \text{ mm}^{-1}$
$\beta = 113.253 \ (2)^{\circ}$	T = 120 (2) K
V = 874.42 (5) Å ³	Plate, colourless
Z = 4	$0.32 \times 0.24 \times 0.03 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer	1804 reflections with $I > 2\sigma(I)$
ω and φ scans	$R_{\rm int} = 0.036$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Bruker, 1999)	$h = -9 \rightarrow 8$
$T_{\min} = 0.370, T_{\max} = 0.892$	$k = -20 \rightarrow 21$
11562 measured reflections	$l = -10 \rightarrow 10$
2002 independent reflections	
Refinement	


Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.055$ S = 1.052002 reflections 103 parameters H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0218P)^2]$
+ 0.7899P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0032 (6)

Detail of a hydrogen-bonded (dashed lines) hydrogenarsenate/water chain in (I).

Figure 3

The crystal packing of (I). Dashed lines indicate hydrogen bonds.

Table 1

Selected geometric parameters (Å, °).

As1-O1	1.6612 (14)	As1-O3	1.6814 (14)
As1-O2	1.6746 (13)	As1-O4	1.7302 (13)
N1-C1-C2-C3	175.33 (16)	C1-C2-C3-N2	175.49 (16)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H1\cdots O2^i$	0.93	1.71	2.6207 (19)	166
$O5-H14\cdots O1$	0.92	1.79	2.709 (2)	177
$O5-H15\cdots O2^{ii}$	0.89	1.98	2.858 (2)	169
$N1 - H2 \cdot \cdot \cdot O1^{iii}$	0.91	1.81	2.711 (2)	173
$N1 - H3 \cdot \cdot \cdot O3^i$	0.91	1.96	2.855 (2)	166
$N1-H4\cdots O5^{iv}$	0.91	1.90	2.798 (2)	168
$N2-H11\cdots O3^{ii}$	0.91	1.90	2.802 (2)	170
$N2-H12\cdots O2^{v}$	0.91	1.95	2.851 (2)	172
N2-H13···O3	0.91	1.84	2.743 (2)	175

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$.

The O-bound H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. H atoms bonded to C and N atoms were placed in idealized positions (C-H = 0.99 Å and N-H = 0.91 Å) and refined as riding, allowing for free rotation of the $-NH_3$ groups. The constraint $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ was applied in all cases.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK*, *DENZO* (Otwinowski & Minor, 1997) and *SORTAV* (Blessing, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We thank the EPSRC National Crystallography Service (University of Southampton, England) for the data collection.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.
- Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.
- Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024-m1026.
- Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359– m1361.
- Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1289-m1291.